The Influence of Water Quality on Arsenic Sorption and Treatment Process Performance
نویسنده
چکیده
A new regulation has been proposed that would lower the acceptable level of arsenic in drinking water from the current standard of 50 ppb. Therefore, research into effective arsenic removal treatment is important, especially for hard to treat waters with high concentrations of silica. The first phase of research was designed to determine if sand ballasted coagulation is a viable means of removing arsenic from drinking water, and if so, to identify the water qualities in which the technology performs best. A jar test protocol was developed and tested on a wide range of waters to compare microsand ballasted coagulation and other coagulation based treatment processes in terms of arsenic removal. Secondary impacts of the microsand process such as residual turbidity, iron, posttreatment membrane filter run length, and TOC removal were also considered as part of this evaluation. Microsand ballasted coagulation provided promising results for many of the simulated groundwater test conditions in which more than 80% of the arsenic regulation costs will be incurred. However, like conventional coagulation/sedimentation, microsand ballasted coagulation performed poorly in waters with high silica and high pH. Thereafter, a second phase of research more closely examined the kinetic behavior of arsenic sorption to amorphous and granular oxides in the presence of silica and calcium. At pH 8.5, calcium dramatically improved arsenic sorption to amorphous iron hydroxide in the presence of silica over short reaction times, but had no long-term advantage. This result could have considerable applications for treatment in that it suggests water quality controls the required reaction times. Additionally, batch tests indicated that activated alumina granular media was more sensitive to water quality than granular ferric hydroxide; however, calcium eliminated silica interference to arsenic sorption onto activated alumina.
منابع مشابه
Influence of Operating Variables on Performance of Nanofiltration Membrane for Dye Removal from Synthetic Wastewater Using Response Surface Methodology
The textile industry is a water intensive industry that produces a large amount of highly colored wastewater that must be properly treated before disposal or reuse. In the present study, to verify the possibility of reusing textile wastewater with nanofilteration (NF), an attempt was made to treatment of synthetic reactive dye aqueous solution by commercial nanofiltration membrane. Experiments ...
متن کاملModeling in situ iron removal from groundwater with trace elements such as As
The cyclic injection of oxygenated water in an aquifer may induce in situ iron removal from groundwater. During injection of aerated water, sorbed ferrous iron is displaced by cations, oxidized in the pore space, and precipitated as ferric iron oxyhydroxide. During pumping, ferrous iron is sorbed from groundwater on the exchange and sorption sites, and the breakthrough of dissolved iron is reta...
متن کاملArsenic removal from water/wastewater using adsorbents--A critical review.
Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Banglade...
متن کاملEffect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals.
Drinking-water treatment residual (WTR) have been proposed as a low-cost alternative sorbent for arsenic (As) - contaminated aquatic and soil systems. However, limited information exists regarding the effect of solution chemistry on As sorption by WTR. A batch incubation study was carried out to investigate the effect of solution pH (3-9) on As(V) sorption by Al- and Fe-based WTR as a function ...
متن کاملArsenic Oxidation Using UV-Activated Persulfate in Aqueous Solutions: Optimization Using Response Surface Methodology Based on Box-Bencken Design
Introduction: The use of arsenic contaminated water can cause a variety of adverse health effects in humans. Therefore, it is essential to seek out a method to remove arsenic more efficiently. This study examined the amount of arsenic oxidation by response surface methodology (RSM) based on Box-Bencken design. Materials and Methods: In this study, oxidizing arsenite to arsenate was performed b...
متن کامل